Robust adaptive control of uncertain systems with guaranteed robust stability and asymptotic performance
نویسنده
چکیده
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. This article presents a robust adaptive control scheme for a discrete-time plant that is subjected to both coprime factor perturbations and unknown exogenous disturbances. With the proposed control scheme, all the variables in the closed-loop system are bounded in the presence of the perturbations and disturbances, and an a priori computable upper bound on the size of the nonparametric dynamical uncertainty, for which stability is ensured, is provided. Moreover, one can guarantee a priori bound on the asymptotic performance of the overall adaptive system which is arbitrarily close to that of the corresponding nonadaptive control system. In addition, it is shown that the ' 1 optimal robust controller design is continuous as a map from the plant to the optimal closed-loop solution. Furthermore, if the set of plants is compact, then the ' 1 optimal robust controller design is uniformly continuous on the set of plants. These properties are necessary for analysing the interplay between identification and control in the overall adaptive system. 1. Introduction Adaptive control theory (Goodwin and Sin 1984) can be used to provide solutions to a variety of control design problems where model uncertainty is due to imprecise knowledge of various parameters. However, it is generally recognised that a specific parametric plant description will never exactly describe a practical system's response, regardless of the choice of the parameters. This is primarily due to neglected dynamics that is not captured by uncertain real parameters. This has motivated the study of the robust adaptive control problem with various approaches. A number of robust adaptive control results have already been obtained (e. 2001) provides another methodology for designing a linear time-invariant feedback controller that optimally reduces the effect of uncertainty on the system, whether …
منابع مشابه
Enhancement of Robust Tracking Performance via Switching Supervisory Adaptive Control
When the process is highly uncertain, even linear minimum phase systems must sacrifice desirable feedback control benefits to avoid an excessive ‘cost of feedback’, while preserving the robust stability. In this paper, the problem of supervisory based switching Quantitative Feedback Theory (QFT) control is proposed for the control of highly uncertain plants. According to this strategy, the unce...
متن کاملFractional order robust adaptive intelligent controller design for fractional-order chaotic systems with unknown input delay, uncertainty and external disturbances
In this paper, a fractional-order robust adaptive intelligent controller (FRAIC) is designed for a class of chaotic fractional order systems with uncertainty, external disturbances and unknown time-varying input time delay. The time delay is considered both constant and time varying. Due to changes in the equilibrium point, adaptive control is used to update the system's momentary information a...
متن کاملRobust H2 switching gain-scheduled controller design for switched uncertain LPV systems
In this article, a new approach is proposed to design robust switching gain-scheduled dynamic output feedback control for switched uncertain continuous-time linear parameter varying (LPV) systems. The proposed robust switching gain-scheduled controllers are robustly designed so that the stability and H2-gain performance of the switched closed-loop uncertain LPV system can be guaranteed even und...
متن کاملRobust Adaptive Fuzzy Sliding Mode Control of Permanent Magnet Stepper Motor with Unknown Parameters and Load Torque
In this paper, robust adaptive fuzzy sliding mode control is designed to control the Permanent Magnet (PM) stepper motor in the presence of model uncertainties and disturbances. In doing so, the nonlinear model is converted to canonical form, then, for designing the controller, the robust sliding mode control is designed to decrease the effects of uncertainties and disturbances. A class of fuzz...
متن کاملDevelopment of RMPC Algorithm for Compensation of Uncertain Time-Delay and Disturbance in NCS
In this paper, a synthesis method based on robust model predictive control is developed for compensation of uncertain time-delays in networked control systems with bounded disturbance. The proposed method uses linear matrix inequalities and uncertainty polytope to model uncertain time-delays and system disturbances. The continuous system with time-delay is discretized using uncertainty po...
متن کاملStability analysis and feedback control of T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay
In this paper, a new T-S fuzzy hyperbolic delay model for a class of nonlinear systems with time-varying delay, is presented to address the problems of stability analysis and feedback control. Fuzzy controller is designed based on the parallel distributed compensation (PDC), and with a new Lyapunov function, delay dependent asymptotic stability conditions of the closed-loop system are derived v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Systems Science
دوره 42 شماره
صفحات -
تاریخ انتشار 2011